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ERROR ESTIMATION FOR REDUCED ORDER MODELS OF

DYNAMICAL SYSTEMS ∗

CHRIS HOMESCU † , LINDA R. PETZOLD ‡ , AND RADU SERBAN §

Abstract. The use of reduced order models to describe a dynamical system is pervasive in
science and engineering. Often these models are used without an estimate of their error or range
of validity. In this paper we consider dynamical systems and reduced models built using proper
orthogonal decomposition. We show how to compute estimates and bounds for these errors, by a
combination of small sample statistical condition estimation and error estimation using the adjoint
method. Most importantly, the proposed approach allows the assessment of regions of validity for
reduced models, i.e., ranges of perturbations in the original system over which the reduced model is
still appropriate. Numerical examples validate our approach: the error norm estimates approximate
well the forward error while the derived bounds are within an order of magnitude.

Key words. model reduction, proper orthogonal decomposition, small sample statistical condi-
tion estimation, adjoint method

AMS subject classifications. 65L10, 65L99

1. Introduction. Model reduction of dynamical systems described by differen-
tial equations is ubiquitous in science and engineering [1]. Reduced models are used
for efficient simulation [12, 24] and control [13, 22]. Moreover, the process of creating
low-order models forces the researcher to isolate and quantify the dominant physical
mechanisms, revealing effective design decisions that would not have been identified
through numerical simulation, experiments or “black box” optimization methods [23].

The Proper Orthogonal Decomposition (POD) method has been used extensively
in a variety of fields including fluid dynamics [18], identification of coherent struc-
tures [8, 16], control [21] and inverse problems [14]. The method has been employed
for industrial applications such as supersonic jet modeling [4], turbine flows [5], ther-
mal processing of foods [2], and study of the dynamic wind pressures acting on build-
ings [11], to name only a few. A detailed description [8] of the POD approach as a
reduction method shows that, for a given number of modes, POD is the most efficient
choice among all linear decompositions in the sense that it retains, on average, the
greatest possible kinetic energy.

As soon as one contemplates the use of a reduced model, questions concerning
the quality of the approximation become paramount. To judge the quality of the
reduced model, it is important to estimate its error. An algorithm for estimating the
error of a class of reduction methods based on projection techniques was presented in
[25]. In this approach, the original problem is linearized around the initial time. The
resulting first-order error estimates are valid for only a small number of time steps
(during which the Jacobian matrix can be considered constant). First-order estimates
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of POD errors were used in [15] to extend the concept of domain decomposition as
a dynamic, a posteriori verification and, if necessary, correction of the approximate
solution. Error estimates for reduced models, more precisely the error for certain
functionals of the solution, were obtained in [19]. The authors employed the dual-
weighted-residual method, which makes use of the solution of an adjoint system.

In the context of fluid dynamics, bounds for the errors resulting from POD model
reduction of 2-D Navier-Stokes equations were computed in [14]. In that work, the
approximation error was decomposed into a contribution that arises due to the POD
spatial approximation (measured in terms of the spectral properties specifying the
POD basis) and the approximation error due to the backward Euler scheme for time
integration. The resulting estimates made use of certain inequalities that, although
valid for the nonlinear evolution problem considered, may not be satisfied for other
examples. For models that contain discontinuities, for example if the solution involves
shocks, it was found in [17] that the POD reduced model was able to represent a
shock in a given location only if one of the snapshots used to build the model has a
discontinuity in the same location. This may require an unacceptably large number
of snapshots to achieve sufficient accuracy of the approximate solution. To overcome
this limitation a domain decomposition technique was introduced, using a reduced
order model over the majority of the computational domain while solving the full
equations in a small region. Given an approximate solution (with unknown accuracy)
generated with a set of POD basis functions, the error is estimated by augmenting the
POD basis with top hat basis functions and computing the first order change in the
solution due to the additional basis functions. By comparing against the results from
a solution of known accuracy, such as one of the snapshots used to generate the POD
basis, the need for domain decomposition and its spatial extent can be determined.

Bounds of POD errors, but not estimates, were considered in [20], as well as
effects (on the reduced order model) of small perturbations in the ensemble of data
from which the POD reduced order model was constructed.

In the present work we take the analysis of reduced models one step further by
analyzing the influence of perturbations to the original system on the quality of the
approximation given by the reduced model. This question is of particular interest
in applications (such as control and inverse problems) in which reduced models are
used not just to approximate the solution of the original system that provided the
data used in constructing the reduced model, but rather to approximate the solution
of systems perturbed from the original one. To the best of our knowledge, there are
no published results to address the estimation of the model reduction error of such
perturbed systems.

We base our approach on a combination of the small sample statistical condition
estimation (SCE) method [10] and error estimation using the adjoint method. Using
this framework, we define regions of validity of the reduced models, that is, ranges of
perturbations in the original system over which the reduced model is still appropriate.
We consider perturbations in both the initial conditions and in parameters describing
the dynamical system itself. The proposed approach is particularly attractive because
the resulting error bounds do not rely on the solution of the perturbed system. In
this sense, we provide an a-priori assessment of the validity of the model-reduction
approximation. We note that our approach is based on linearization. For large enough
perturbations, knowledge of the solution of the perturbed system would be required.

Unlike the method presented in [25], our estimates and bounds are valid over the
entire time interval considered and not only in a neighborhood of the initial time.



ERROR ESTIMATION FOR REDUCED ORDER MODELS 3

Moreover, we obtain estimates for the continuous error, as opposed to its discrete ap-
proximation. Although we study only a particular projection-based model reduction
technique (POD) among those considered in [25], the methodology developed here for
POD can be easily extended to other types of projection. Compared to the approach
taken in [14], our method is applicable to a larger class of problems, our main require-
ment being that the norm of the POD-based error is small enough for the linearized
error equation to be a good enough approximation. Furthermore, our estimates are
independent of the time integration method. We note also that our use of adjoint
models for error estimation is similar to that employed in [19]. However, as will be
seen below, the use of the SCE method enables the derivation of error “condition
numbers” and allows effective treatment of the region of validity problem.

In the context of integration of ordinary differential equations (ODE), the SCE
method combined with the adjoint approach has been used in [3] for estimation and
control of the global integration error.

The remainder of this paper is organized as follows. In §2 and §3 we briefly
describe the use of POD for model reduction and, respectively, the SCE method for
norm estimation. In §3.1 we motivate our proposed approach of using SCE, combined
with error estimation using the adjoint method, to estimate the errors due to the use of
a reduced order model. In §4 we analyze errors arising purely from the model reduction
itself: the total approximation error and the subspace integration error. In §5 we
analyze regions of validity of POD reduced models. In §6 we present numerical results
for two example problems. The first one is obtained from the semi-discretization of
time-dependent partial differential equation (PDE), namely advection-diffusion, while
the second example models a pollution chemical reaction mechanism. Finally, §7
summarizes our results and indicates plans of future research.

2. POD-based reduced models. POD provides a method for finding the best
approximating affine subspace to a given set of data. When using POD for model
reduction of dynamical systems, the data are time snapshots of the solution obtained
via numerical simulations or from experiments. Consider the ODE system

dy

dt
= f(y, t) , y(t0) = y0 ,(2.1)

for t ∈ [t0, tf ], with y, y0 ∈ Rn and f : Rn × R → Rn. Consider next the solutions
of (2.1) at m time points, collected in the n × m matrix Y = [y(t1) − ȳ, y(t2) −
ȳ, . . . y(tm) − ȳ], where ȳ is the mean of these observations. POD seeks a subspace
S ∈ Rn and the corresponding projection matrix PS so that the total square distance

‖Y − PY‖2 =
m
∑

i=1

‖ (y(ti)− ȳ)− P (y(ti)− ȳ) ‖2

is minimized. Let λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0 be the ordered eigenvalues of the correla-
tion matrix R = YYT . Then the minimum value of ‖Y −PY‖2 over all k-dimensional
subspaces S, with k ≤ n, is given by

∑n
j=k+1 λj . Moreover, the minimizing S is the

invariant subspace corresponding to the eigenvalues λ1, . . . , λk. Using the singular
value decomposition (SVD) [6] of the observation matrix, UTYV = Σ, the projection
matrix corresponding to the optimal POD subspace S is obtained as

P = ρρT ∈ Rn×n ,(2.2)
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where ρ is the matrix of projection onto S, the subspace spanned by the reduced basis
obtained from the SVD. The matrix ρ ∈ Rn×k consists of the columns Vi (i = 1 . . . k),
the singular vectors corresponding to the k largest singular values.

In a coordinate system embedded in S, the projection of a point y onto S is
represented by yS = ρT (y − ȳ) ∈ Rk , while in the full space, the same projection is
expressed as ỹ = P (y − ȳ) + ȳ ≡ ρyS + ȳ ∈ Rn .

A POD-based reduced model that approximates the original problem (2.1) can
then be constructed [20] by projecting onto S the vector field f(s, t) at each point
s ∈ S. If yS are the subspace coordinates of s, then

dyS

dt
= ρT f(ρyS + ȳ, t) , yS(t0) = ρT (y0 − ȳ) .(2.3)

The approximate solution ŷ is the solution of the ODE initial-value problem (IVP)

dŷ

dt
= Pf(ŷ, t) , ŷ(t0) = P (y0 − ȳ) + ȳ .(2.4)

3. Small sample statistical method for condition estimation. The small
sample statistical condition estimation (SCE) method, originally proposed in [10],
offers an efficient means for condition estimation for general matrix functions, at the
cost of allowing moderate relative errors in the estimate. The basic idea is described
below (for complete details, see [7, 10]).

For any vector v ∈ Rn, if z is selected uniformly and randomly from the unit
sphere Sn−1, the expected value of zT v is proportional to the norm of v:

E(|zT v|) =Wn||v|| .
The Wallis factor Wn is defined as

W1 = 1 , Wn =















1 · 3 · · · (n− 2)

2 · 4 · · · (n− 1)
n odd

2

π

2 · 4 · · · (n− 1)

1 · 3 · · · (n− 2)
n even

.

We estimate the norm ||v|| using the expression ξ =
|zT v|
Wn

, with Wn ≈
√

2

π(n− 1
2
)
.

This estimate is first order in the sense that the probability of a relative error in the
estimate is inversely proportional to the size of the error. That is, for γ > 1

Pr

( ||v||
γ
≤ ξ ≤ γ||v||

)

≥ 1− 2

πγ
+O

(

1

γ2

)

.

Additional function evaluations can improve the estimation procedure. Suppose that
we obtain estimates ξ1, ξ2, . . . , ξp corresponding to orthogonal vectors z1, z2, . . . , zq
selected uniformly and randomly from the unit sphere Sn−1. The expected value of
the norm of the projection of v onto the span Z generated by z1, z2, . . . , zq is

E

(

√

|zT1 v|2 + |zT2 v|2 + · · ·+ |zTq v|2
)

=
Wn

Wq
||v|| .

The estimate ν(p) =
Wq

Wn

√

|zT1 v|2 + |zT2 v|2 + · · ·+ |zTq v|2 is q-th order accurate, i.e.,

a relative error of size γ in the estimate occurs with probability proportional to γ−q:

Pr

( ||v||
γ
≤ ν(q) ≤ γ||v||

)

≥ 1− 1

p!

(

2

πγ

)q

+O

(

1

γq+1

)

.
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3.1. SCE for estimation of approximation errors in model reduction.

All error estimates derived in this paper begin with the linearizations of one of the
ODEs (2.1), (2.3), (2.4) or perturbations of these. Thus the error estimates are based
on solutions of linear error equations. To estimate the norm ‖e(tf )‖ of an error vector
e(t) ∈ Rn at t = tf , we need to evaluate quantities zTj e(tf ) for some random vector
zj selected uniformly from the unit sphere Sn−1. The norm estimate is then

||e(tf )|| ≈
Wq

Wn

√

√

√

√

q
∑

j=1

|zTj e(tf )|2 .(3.1)

The scalar products zTj e(tf ) can be computed efficiently using an adjoint model (to
the corresponding linear error equation) with final conditions at tf based on the vector
zj . However, this approach naturally raises the question: “What is the advantage of
using (typically more than one) solution(s) of adjoint systems to estimate the norm
of a quantity that can be otherwise obtained with only one forward ODE solution (of
the error equation)?” Our method is motivated by the fact that we are interested
not only in finding the errors for one given ODE system, but rather in estimating
(as efficiently as possible) the behavior of such errors for families of related ODE
systems. In § 5 we study the concept of regions of validity of reduced models, i.e., the
range of perturbations in the original ODE (2.1) over which the reduced model (2.3)
is still appropriate. An approach based on forward error equations involves solving
repeatedly such error equations (for each value of interest of the perturbation). On the
other hand, an approach combining SCE estimates and adjoint models (as described
in our paper) can be used to define what we term “condition numbers” for these
error equations. While these condition numbers can provide only approximate upper
bounds for the norms of the errors under investigation, they have the undeniable
advantage of allowing a-priori estimates of the errors induced by perturbations, i.e.,
before having to solve such a perturbed system (or even a reduced perturbed system).

4. Estimation of the approximation error. We want to estimate the differ-
ence between the solution of the POD-reduced model (2.4) and the solution of the
original equation (2.1). Let ỹ(t) be the projection onto S of the solution y(t). The
total approximation error e(t) = ŷ(t) − y(t) can be split [20] into the subspace ap-
proximation error e⊥(t) = ỹ(t) − y(t) and the error introduced by the integration in
the subspace S, ei(t) = ŷ(t)− ỹ(t):

e(t) = ŷ(t)− y(t) = (ŷ(t)− ỹ(t)) + (ỹ(t)− y(t)) = ei(t) + e⊥(t) .(4.1)

The error component e⊥ is orthogonal to S, while the component ei is parallel to S
(see Fig. 4.1). Algebraically, this is expressed as Pe⊥(t) = 0 and Pei(t) = ei(t).

4.1. Total approximation error. Subtracting (2.1) from (2.4) yields an equa-
tion for the total error e

de

dt
= Pf(ŷ, t)− f(y, t) = Pf(ŷ, t)− f(ŷ, t) + f(ŷ, t)− f(y, t)

= (P − I)f(ŷ, t)− J(ŷ, t)(y − ŷ) +O(||e||2) ,

where J is the Jacobian of the function f , i.e., J = ∂f/∂y. Let us introduce the
notation Q = I −P . Thus, to a first order approximation, the error function satisfies

de

dt
= J(ŷ, t)e(t)−Qf(ŷ, t) , e(t0) = −Q(y0 − ȳ) .(4.2)
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e iy~

ŷ

e

y

S

Fig. 4.1. Solution and error components for POD-reduced models. y is the solution of the
original ODE, ỹ is its projection on the affine subspace S, and ŷ is the solution of the reduced
model. The error component e⊥ ∈ S⊥, while the subspace integration error component ei ∈ S.

Let the matrix function Φŷ(t) ∈ Rn×n satisfy

dΦŷ

dt
= J(ŷ, t)Φŷ , Φŷ(t0) = In ,(4.3)

where the subscript ŷ for Φŷ indicates that the Jacobian is evaluated at ŷ. Then

e(tf ) = −
∫ tf

t0

Φŷ(tf )Φ
−1
ŷ (s)Qf(ŷ(s), s) ds− Φŷ(tf )Q(y0 − ȳ) .

For a random vector z uniformly selected from the unit sphere Sn−1, we have

zT e(tf ) = −
∫ tf

t0

zTΦŷ(tf )Φ
−1
ŷ (s)Qf(ŷ(s), s) ds− zTΦŷ(tf )Q(y0 − ȳ) .

It is straightforward to verify that the solution λŷ ∈ Rn of the adjoint system

dλŷ
dt

= −JT (ŷ, t)λŷ , λŷ(tf ) = z(4.4)

satisfies λTŷ (s) = zTΦ(tf )Φ
−1(s) and λTŷ (t0) = zTΦ(tf ). As before, the subscript ŷ

indicates that the Jacobian in the adjoint system (4.4) is evaluated at ŷ. Therefore,
the quantity zT e(tf ) is simply

zT e(tf ) = −
∫ tf

t0

λTŷ (s)Qf(ŷ(s), s) ds− λTŷ (t0)Q(y0 − ȳ) .(4.5)

The SCE estimate for the norm of e(tf ) is obtained by combining (3.1) and (4.5)

||e(tf )|| ≈
Wq

Wn

√

√

√

√

q
∑

j=1

∣

∣

∣

∣

∫ tf

t0

λTŷ (s)Qf(ŷ(s), s) ds+ λTŷ (t0)
TQ(y0 − ȳ)

∣

∣

∣

∣

2

.(4.6)

The value of the integral is ψ(t0), where ψ satisfies the quadrature equation

dψ

dt
= −λTŷ (t)Qf(ŷ(t), t) , ψ(tf ) = 0 .(4.7)
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Algorithm 1 Estimate for the total approximation error

Provide the matrix of measurement data Y
Set the POD dimension k
Compute mean value of data ȳ and construct POD projection matrices ρ and P
Select (uniformly and randomly) q orthogonal vectors from the unit sphere Sn−1

Solve (2.3) for yS

ŷ(t) = ρyS(t) + ȳ
Initialize s = 0
for i = 1 to q do

Set λŷ(tf )← zi
Solve (4.4)+(4.7) for λŷ and ψ

Update s← s+
[

ψ(t0) + λTŷ (t0)
TQ(y0 − ȳ)

]2

end for

Compute Wallis factors Wq and Wn

Compute the SCE norm estimate e = (Wq/Wn)×
√
s

Algorithm 1 summarizes our approach.
It may seem more efficient to compute the SCE norm estimate using a POD-

reduced adjoint system to evaluate λŷ in (4.6). Although the same projection can
be used to model-reduce the adjoint system, this approach still requires knowledge
of the mean of the adjoint solution, which is unavailable without a solution of the
adjoint system (4.4). In other words, the approximation subspace Sλ is parallel to
S but not identical to it. This issue can be circumvented if we are not considering
error components outside the subspace S. This estimate is presented next. Its main
advantage is given by the fact that the differential equations are solved in a space of
dimension k ¿ n, where n is the dimension of the solution for the original problem.

4.2. Subspace integration error. Differentiating e⊥(t) + ei(t) = ŷ(t) − y(t)
and substituting the ODEs for y and ŷ, we get

de⊥
dt

+
dei
dt

= Pf(ŷ, t)− f(y, t) .

We project the above equation onto S (by multiplying on the left by P ). Using that
Pe⊥ = 0, we obtain an IVP for the subspace integration error:

dei
dt

= P (f(ŷ, t)− f(y, t)) , ei(t0) = 0 ,(4.8)

where we have used that P 2 = P . The starting point ŷ(t0) is the projection ỹ(t0) of
y(t0) onto S, yielding the initial condition ei(t0) = 0. Thus the subspace integration
error is governed by an ODE with the subspace approximation error e⊥(t) as forcing
term. An approximation to (4.8) is obtained by linearizing around the trajectory ŷ(t):

dei
dt

= PJ(ŷ, t)ei + PJ(ŷ, t)e⊥ , ei(t0) = 0 .(4.9)

In the S coordinate system defined by the coordinate transformation

eSi = ρT ei ∈ Rk , ei ≡ êi = ρeSi ,
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and using the identity ρT ρ = Ik, (4.9) can be written as

deSi
dt

= ρTJ(ŷ, t)ρeSi + ρTJ(ŷ, t)e⊥ , eSi (t0) = 0 .(4.10)

If φŷ ∈ Rk×k is the fundamental matrix, satisfying

dφŷ
dt

= ρTJ(ŷ, t)ρφŷ , φŷ(t0) = Ik ,

then, for a random vector zS uniformly selected from the unit sphere Sk−1, we have

(zS)T eSi (tf ) =

∫ tf

t0

(zS)Tφŷ(tf )φ
−1
ŷ (s)ρTJ(ŷ(s), s)e⊥(s) ds .

Let µTŷ (s) = (zS)Tφŷ(tf )φ
−1
ŷ (s), where µŷ solves the adjoint system

dµŷ
dt

= −ρTJT (ŷ, t)ρµŷ , µŷ(tf ) = zS(4.11)

Therefore (zS)T eSi (tf ) =
∫ tf
t0
µTŷ (s)ρ

TJ(ŷ(s), s)e⊥(s) ds and the SCE approximation
for the norm of the subspace integration error is

||ei(tf )|| ≈
Wq

Wn

√

√

√

√

q
∑

j=1

∣

∣

∣

∣

∫ tf

t0

µTŷ (s)ρ
TJ(ŷ(s), s)e⊥(s) ds

∣

∣

∣

∣

2

.(4.12)

Bounds for the subspace integration error are obtained as follows. For some unit vector
zSj in (4.11) let θj(s) = JT (ŷ(s), s)ρkµŷ(s) ∈ RNy and wj =

∫ tf
t0

(θj)T (s)e⊥(s) ds.
Then

|wj | ≤
∫ tf

t0

|(θj)T (s)e⊥(s)| ds ≤





∫ tf

t0

Ny
∑

i=1

|θji (s)| ds



 ||e⊥||L∞ .(4.13)

Thus, defining κj(ei) = ||θj ||L1
=
∫ tf
t0

∑Ny

i=1 |θ
j
i (s)| ds, we have

||ei(tf )|| ≤ κ(ei) · ||e⊥||L∞ , κ(ei) =
Wq

Wn

√

√

√

√

q
∑

j=1

κ2
j (ei) ,(4.14)

where κ(ei) can be seen as a “condition number” for the subspace integration error.
The expressions derived above require knowledge of the projection error e⊥ at all

times in [t0, tf ]. While the projection error may not be readily available, its norm can
be easily related to the error associated with the choice of the POD subspace. For
this, a more convenient formulation of the POD approximation is to find a subspace
S ∈ Rn which minimizes the total square distance defined as

d2 = ‖ (y − ȳ)− P (y − ȳ) ‖2L2
=

∫ tf

t0

‖ (y(s)− ȳ)− P (y(s)− ȳ) ‖22 ds .(4.15)

The solution to this problem requires the construction of the correlation matrix

R =

∫ tf

t0

(y(s)− ȳ) (y(s)− ȳ)T ds .(4.16)
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If λ1 ≥ . . . ≥ λm ≥ 0 are the ordered eigenvalues of the symmetric positive semidefi-
nite matrix R, then the minimum value of d2 over all k-dimensional affine subspaces S
passing through ȳ is given by

∑n
j=k+1 λj . The minimizing S is the invariant subspace

corresponding to the eigenvalues λ1, . . . , λk, while the projection matrix ρ consists of
the unit eigenvectors corresponding to these k largest eigenvalues. We also have that

||e⊥||L∞ ≤ ||e⊥||L2
≡

√

√

√

√

n
∑

j=k+1

λj .

Employing observations as data points for a trapezoidal approximation for the integral
(4.15) leads to the same subspace S as the one obtained with the POD definition in
§2, while the corresponding optimal total square distances will be proportional.

Finally, we note that, for a vector-valued function f : [t0, tf ]→ RN , the Lp norm
(p ≥ 1) is defined as

||f ||Lp
=

(∫ tf

t0

||f(s)||pp ds
)1/p

, where ||f(s)||p =

(

N
∑

i=1

|fi(s)|p
)1/p

.

In particular, ||f ||L1
=
∫ tf
t0

∑N
i=1 |fi(s)| ds and ||f ||L∞ = ess sup (maxi |fi(s)|). With

the above norm definitions, the inequality in (4.13) is just Hölder’s inequality

||fT g||L1
≤ ||f ||Lp

· ||g||Lq
, if

1

p
+

1

q
= 1 ,(4.17)

extended to vector-valued functions f and g, for p = 1 and q =∞.

5. Regions of validity for POD-reduced models. Once a reduced model is
constructed, we wish to apply it to simulate systems that are close in some sense to
the system that was used for generating the reduced model. This raises the issue of
defining the range of initial conditions and parameters over which the reduced model
can be used with acceptable accuracy.

Let Y ∈ Rn be the solution of an ODE obtained by applying a perturbation to

(2.1), either in the initial conditions (in which case we use the notation Y ic) or in the

right-hand side (in which case we use the notation Y rhs). Our goal is to estimate the
errors introduced by this perturbation, in addition to the model reduction error e(t).
There are two perspectives from which this problem can be addressed.

Firstly, the reduced model might approximate the perturbed solution Y , given
a POD projection matrix built using the solution of the unperturbed ODE (2.1).
Then we want to estimate the error E1 = Ŷ − Y , where Ŷ is the solution of an
ODE of the form (2.4), with P based on y. Alternatively, we may want estimates
for the cumulative error (due to the POD model-reduction and the perturbation in
the original ODE), E2 = Ŷ − y, where Ŷ is the solution of a POD reduced-model
based on the solution Y of the perturbed ODE. Calculating E2 = Ŷ −y is completely
equivalent to computing E2 = ŷ − Y (by considering y to be a perturbation to Y ).
To obtain SCE estimates for E1 and E2, we construct the ODE systems based on
perturbations of the initial conditions

dY ic

dt
= f(Y ic, t) , Y ic(t0) = Y ic

0 = y0 + δy0 ,(5.1)

dŶ ic

dt
= Pf(Ŷ ic, t) , Ŷ ic(t0) = P (Y ic

0 − ȳ) + ȳ(5.2)
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and on perturbations of right-hand side parameters

dY rhs

dt
= f(Y rhs, t, p+ δp) , Y rhs(t0) = y0 ,(5.3)

dŶ rhs

dt
= Pf(Ŷ rhs, t, p+ δp) , Ŷ rhs(t0) = P (y0 − ȳ) + ȳ .(5.4)

Figure 5.1 illustrates these solutions, as well as the errors e, E1 and E2.

y~

ŷ

Y
~

Y
^

yδ
0

E2

E1

Y

y

S

(a) Perturbation in initial conditions.

y~

ŷ

Y
~

Y
^

E
1

E
2

Y

y

S

(b) Perturbation in right-hand side.
Fig. 5.1. Error components in model-reduction of perturbed systems. The solution of the

perturbed system, its projection onto S, and the solution of the reduced perturbed system are denoted
by Y , Ỹ , and Ŷ , respectively. The error E1 represents the error committed in reducing the perturbed
model, while E2 is the cumulative error (perturbation + model-reduction).

It is important to realize that useful estimates should not rely on the solution Y
(or Ŷ ) of the perturbed system (or its POD-reduction). Indeed, such error estimates
are desired with the sole objective of deciding whether or not to solve these systems.

5.1. Estimation of E1
ic
= Ŷ ic − Y ic. An SCE estimate like (4.6) is not useful

in the sense described above, as it would be based on the error equation

dE1

dt
= J(Ŷ ic, t)E1 −Qf(Ŷ ic, t) , E1(t0) = −Q(y0 + δy0 − ȳ) ,(5.5)

which is a linearization around the (unknown) trajectory Ŷ ic(t). Instead, let us define

∆ic(t) = E1(t)− e(t). The norm ‖E1(tf )‖ can be bounded by
∣

∣

∣
‖e(tf )‖ − ‖∆ic(tf )‖

∣

∣

∣
≤ ‖E1(tf )‖ ≤ ‖e(tf )‖+ ‖∆ic(tf )‖ .(5.6)

Any estimates of ‖∆ic(tf )‖ would require solving the POD-reduced perturbed system
(5.2). However, similar to §4.2, this problem can be circumvented by splitting the

error ∆ic into two components: ∆ic
⊥ orthogonal to S and ∆ic

i parallel to S

∆ic = ∆ic
⊥ +∆ic

i , where

∆ic
⊥ = E1

⊥ − e⊥ = (Ỹ ic − Y ic)− (ỹ − y) = −Q(Y ic − y)(5.7)

∆ic
i = E1

i − ei = (Ŷ ic − Ỹ ic)− (ŷ − ỹ) = (Ŷ ic − ŷ)− P (Y ic − y)

Next we evaluate the influence of δy0 on each component separately. Retaining only

the first order term of a Taylor series for ∆ic
⊥ around δy0 = 0 and using the fact that

∆ic
⊥ = 0 for δy0 = 0, we get

∆ic
⊥ = −Q dY ic

dδy0

∣

∣

∣

∣

∣

δy0=0

δy0 .
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Differentiating (5.1) with respect to δy0 leads to the sensitivity equation

dΨic

dt
= J(y, t)Ψic , Ψic(t0) = I, where Ψic = dY ic/dy0.(5.8)

The Jacobian in (5.8) is evaluated at δy0 = 0, in which case Y ic ≡ y. The sensitivity

matrix Ψic is the same as the fundamental matrix Φy corresponding to the ODE (2.1).
For a uniformly selected random vector z, the solution λy of the adjoint system

dλy
dt

= −JT (y, t)λy , λy(tf ) = Qz , z ∈ Sn−1 ,(5.9)

combined with the fact that QT = (I − P )T = (I − P ) = Q, gives the equality

zT∆ic
⊥ (tf ) = zT

[

−QΨic(tf )δy0

]

= −λTy (t0) · δy0 .(5.10)

Since ∆ic
⊥ is orthogonal to S, a more accurate estimate can be obtained by using

vectors from the sphere Sn−k−1 embedded in S⊥, instead of selecting vectors z ∈
Sn−1 and projecting them onto S⊥, the orthogonal complement of S. If z′ is the
representation in Rn of such a vector, then Qz′ = z′. The same adjoint system (5.9)
and formula (5.10) can be used, but the probability that the estimate lies within a

given factor w of the true norm ‖∆ic
⊥ (tf )‖ is now higher (see note in §3). In practice

we use the approximation y ≈ ŷ in evaluating the Jacobian in (5.9), with ŷ computed
from the solution yS of the k-dimensional ODE (2.3).

Therefore, an SCE estimate of the norm of ∆ic
⊥ (tf ) is given by

||∆ic
⊥ (tf )|| ≈

Wq

Wn

√

√

√

√

q
∑

j=1

|z′Tj ∆ic
⊥ (tf )|2 =

Wq

Wn

√

√

√

√

q
∑

j=1

|λTŷ (t0)δy0|2 ,(5.11)

where λŷ is the solution of dλŷ/dt = −JT (ŷ, t)λŷ, λŷ(tf ) = Qz′j . Hölder’s inequality

(for p = q = 2) gives |λTŷ (t0)δy0| ≤ ||λŷ(t0)||2 · ||δy0||2, which implies

||∆ic
⊥ (tf )|| ≤ κ(∆ic

⊥ ) · ||δy0|| ,(5.12)

where the “condition number” for the orthogonal component of ∆ic is defined as

κ(∆ic
⊥ ) =

Wq

Wn

√

√

√

√

q
∑

j=1

κ2
j (∆

ic
⊥ ) , κj(∆

ic
⊥ ) = ||λŷ(t0)||2 .

Differentiating with respect to time the expression for ∆ic
i in (5.7) and substituting the

appropriate ODE right hand sides, we obtain first order approximations. The second
of the following approximations is based on the assumption that J(y, t) ≈ J(ŷ, t)

d∆ic
i

dt
=
(

Pf(Ŷ ic, t)− Pf(ŷ, t)
)

− P
(

f(Y ic, t)− f(y, t)
)

≈ PJ(ŷ, t)(Ŷ ic − ŷ)− PJ(y, t)(Y ic − y) ≈ PJ(ŷ, t)∆ic
i .

Since E1
ic
(t0) = ei(t0) = 0 it follows that ∆ic

i (t0) = 0 and, to a first order approxima-

tion, ∆ic
i (t) = 0, for any t ≥ 0. In other words, a perturbation to the initial conditions
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of the original ODE does not introduce additional subspace integration errors. As a

consequence, ∆ic(tf ) ≈ ∆ic
⊥ (tf ) and, combining (5.6) and (5.12), we have

∣

∣

∣‖e(tf )‖ − ‖∆ic
⊥ (tf )‖

∣

∣

∣ ≤ ‖E1
ic
(tf )‖ ≤ ‖e(tf )‖+ κ(∆ic

⊥ ) · ||δy0|| .(5.13)

Note that, when using SCE estimates for the norms involved in the above bounds,
the true value of ‖E1

ic
(tf )‖ may not be bracketed by these bounds.

5.2. Estimation of E2
ic

= ŷ − Y ic. Subtracting the ODEs satisfied by ŷ and

Y ic, the error E2
ic

satisfies, to a first order approximation,

dE2
ic

dt
= J(ŷ, t)E2

ic
−Qf(ŷ, t) , E2

ic
(t0) = −Q(y0 − ȳ)− δy0 .(5.14)

For a uniformly selected random vector z ∈ Sn−1 and with λŷ the solution of (4.4),
we have

zTE2(tf ) = −
∫ tf

t0

λTŷ (s)Qf(ŷ(s), s) ds− λTŷ (t0) (Q(y0 − ȳ) + δy0)

(5.15)
= zT e(tf )− λTŷ (t0)δy0 ,

where e(tf ) is the approximation error for the original system, defined by (4.1). With

the notation Γic(t) = Ψic
ŷ (t)δy0 and combining (5.15) and (5.10), we conclude that

zTE2
ic
(tf ) = zT

[

e(tf ) + Γic(tf )
]

,(5.16)

where Ψic
ŷ is the solution of the IVP dΨic

ŷ /dt = J(ŷ, t)Ψic
ŷ , Ψic

ŷ (t0) = In. Thus, for
λŷ the solution of (4.4), the following inequalities hold:

∣

∣

∣‖e(tf )‖ − ‖Γic(tf )‖
∣

∣

∣ ≤ ‖E2
ic
(tf )‖ ≤ ‖e(tf )‖+ κ(Γic) · ||δy0|| ,(5.17)

where

||Γic(tf )|| ≈
Wq

Wn

√

√

√

√

q
∑

j=1

|λTŷ (t0)δy0|2 and κ(Γic) =
Wq

Wn

√

√

√

√

q
∑

j=1

‖λŷ(t0)‖22 .

Since (5.16) holds for any vector z and final time tf , we conclude that E2
ic
= e+Γic,

for any t. This implies that the SCE bound estimates (5.17) for the norm of E2
ic
(tf )

are more accurate than those derived in §5.1 for the norm of E1(tf ), based on the

approximation E1 ≈ e + ∆ic
⊥ (ignoring ∆ic

i and using y ≈ ŷ in the adjoint system).
Furthermore, as seen from (5.15), an SCE estimate for ‖E2

ic
(tf )‖ can be computed

without need for Y ic or Ŷ ic.

5.3. Estimation of E1
rhs

= Ŷ rhs − Y rhs. Similar to §5.1, we decompose the

error ∆rhs = E1
rhs
− e into its components ∆rhs

⊥ ∈ S⊥ and ∆rhs
i ∈ S. We retain only

the first order term from the Taylor expansion of ∆rhs
⊥ around δp = 0

∆rhs
⊥ = −Q dY rhs

dδp

∣

∣

∣

∣

∣

δp=0

δp .
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With Ψrhs the sensitivity matrix dY rhs/dp and K = ∂f/∂p, we have

dΨrhs

dt
= J(y, t, p)Ψrhs +K(y, t, p) , Ψrhs(t0) = 0 ,

The solution Ψrhs can be written in terms of the fundamental matrix Φy as

Ψrhs(tf ) =

∫ tf

t0

Φy(tf )(Φy(s))
−1K(y(s), s, p) ds .

Using the solution λy of the adjoint system (5.9), we have, for an arbitrary z ∈ Rn

zT∆rhs
⊥ (tf ) = −

(∫ tf

t0

λTy (s)K(y(s), s, p) ds

)

· δp .(5.18)

The observations in §5.1 remain valid: (a) using vectors z′ from the Sn−k−1 sphere
embedded in S⊥ gives a more accurate SCE error norm estimate; and (b) a more effi-
cient adjoint solution can be obtained assuming J(y, t, p) ≈ J(ŷ, t, p) and K(y, t, p) ≈
K(ŷ, t, p). Using (3.1) and (5.18), the SCE estimate of the norm of ∆rhs

⊥ is

||∆rhs
⊥ (tf )|| ≈

Wq

Wn

√

√

√

√

q
∑

j=1

∣

∣

∣

∣

∫ tf

t0

λTŷ (s)K(ŷ(s), s, p) δp ds

∣

∣

∣

∣

2

,(5.19)

bounded by ||∆rhs
⊥ (tf )|| ≤ κ(∆rhs

⊥ ) · ||δp||∞, where κ(∆rhs
⊥ ) is defined as

κ(∆rhs
⊥ ) =

Wq

Wn





q
∑

j=1

κ2
j (∆

rhs
⊥ )



 , κj(∆
rhs
⊥ ) = ||λTŷK||L1

.

With K defined as above, the component ∆rhs
i parallel to S satisfies the ODE

d∆rhs
i

dt
=
(

Pf(Ŷ rhs, t, p+ δp)− Pf(ŷ, t, p)
)

− P
(

f(Y rhs, t, p+ δp)− f(y, t, p)
)

≈ P
(

J(ŷ, t, p)(Ŷ rhs − ŷ) +K(ŷ, t, p) δp
)

− P
(

J(y, t)(Y rhs − y) +K(y, t, p) δp
)

.

Using the approximations J(y, t, p) ≈ J(ŷ, t, p) and K(y, t, p) ≈ K(ŷ, t, p), we obtain

d∆rhs
i

dt
= PJ(ŷ, t, p)∆rhs

i .

Since ∆rhs
i (t0) = 0 it follows that, to a first order approximation, ∆rhs

i (t) = 0, for

any t ≥ 0. As a consequence, ∆rhs(tf ) ≈ ∆rhs
⊥ (tf ) and therefore

∣

∣

∣
‖e(tf )‖ − ‖∆rhs

⊥ (tf )‖
∣

∣

∣
≤ ‖E1

rhs
(tf )‖ ≤ ‖e(tf )‖+ κ(∆rhs

⊥ ) · ||δp||∞ .(5.20)
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5.4. Estimation of E2
rhs

= ŷ−Y rhs. Following a similar approach to §5.3, for
a uniformly selected random vector z ∈ Sn−1 and with λŷ the solution of (4.4)

zTE2(tf ) = −
∫ tf

t0

λTŷ (s) [Qf(ŷ(s), s, p) +K(ŷ(s), s, p) δp] ds

− λTŷ (t0)Q(y0 − ȳ)(5.21)

= zT e(tf )−
∫ tf

t0

λTŷ (s)K(ŷ(s), s, p) δp ds ,

where e(tf ) is the approximation error for the original system, defined by (4.1). As

in §5.2, we can write E2
rhs

= e+ Γrhs, with Γrhs(t) = Ψrhs
ŷ (t) δp and

dΨrhs
ŷ

dt
= J(ŷ, t, p)Ψrhs

ŷ +K(ŷ, t, p) , Ψrhs
ŷ (t0) = 0 .

Therefore, using ‖Γrhs(tf )‖ ≤ ‖δp‖∞, the following inequalities hold:
∣

∣

∣
‖e(tf )‖ − ‖Γrhs(tf )‖

∣

∣

∣
≤ ‖E2

rhs
(tf )‖ ≤ ‖e(tf )‖+ κ(Γrhs) · ‖δp‖∞ .(5.22)

With λŷ the solution of (4.4), the quantities in the above expression are

||Γrhs(tf )|| ≈
Wq

Wn

√

√

√

√

q
∑

j=1

∣

∣

∣

∣

∫ tf

t0

λTŷ (s)K(ŷ(s), s, p) δp ds

∣

∣

∣

∣

2

and κ(Γrhs) =
Wq

Wn

√

√

√

√

q
∑

j=1

‖λTŷK‖2L1

The above SCE bound estimates for the norm of E2
rhs

(tf ) are more accurate than
those derived in §5.3 for the norm of E1

rhs
(tf ). Furthermore, starting from (5.21), an

SCE estimate for ‖E2
rhs

(tf )‖ can be computed without need for Y rhs or Ŷ rhs.

6. Examples. We consider reduced-order ODE examples that are representative
of problems derived from spatial discretization of PDEs (linear advection-diffusion) or
directly obtained from physical phenomena (a pollution model). Additional examples
are described in [9]. For each example, two figures with numerical results are provided
(Figs. 6.2 and 6.3 for the first example and in Figs. 6.5 and 6.6 for the second one.)
The estimates (and bounds) were obtained using Nz = 1 (blue), Nz = 2 (green), and
Nz = 3 (red), where Nz is the number of orthogonal vectors used by the SCE.

The first figure contains POD approximation errors as functions of the dimen-
sion of the subspace S. The norm of the total approximation error at the final time,
‖e(tf )‖ = ‖ŷ(tf )−y(tf )‖, is given in plot (a), while the norm of the subspace integra-
tion error at the final time, computed in the subspace S, i.e., ‖eSi (tf )‖ is presented in
plot (b). The solid (black) lines represent the corresponding norms computed by the
forward integration of the error equations (4.2) and (4.10), respectively. The dotted
(colored) lines describe SCE estimates (4.6) and (4.12), respectively, for different val-
ues of q. The dashed (colored) lines appear only in plot (b) and represent the bounds
of (4.14) for different values of q.

The first four plots in the second figure contain estimates of errors induced by
a perturbation δy0 in the initial conditions. Plot (a) presents the norm of the total
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approximation error of the perturbed system at the final time, ‖E1(tf )‖ = ‖Ŷ ic(tf )−
Y ic(tf )‖, as a function of the subspace dimension Nk. Plot (b) contains the norm of
the cumulative error of the perturbed system at the final time, ‖E2(tf )‖ = ‖ŷ(tf ) −
Y ic(tf )‖, as a function of the subspace dimension Nk. Plots (c) and (d) present the
error bounds for ‖E1

ic
(tf )‖ and ‖E2

ic
(tf )‖, respectively, as predicted by the condition

number κ(∆ic
⊥ ) over a range of perturbations δy0, for a given value of Nk. The solid

(black) line represents the norm computed by the forward integration of the error
equations (5.5) and (5.14), respectively. For different values of q, the dashed (colored)
lines represent SCE estimates of the upper bound of (5.13) in plots (a) and (b), and
of (5.17) in plots (c) and (d). For different values of q, the dotted (colored) lines
represent SCE estimates for ‖E1

ic
(tf )‖ in plot (a) and for ‖E2

ic
(tf )‖ in plot (b).

The last four plots in the second figure contain estimates of errors induced by a
perturbation δp in the model parameters. The corresponding plots (e), (f), (g), and
(h) are in a format which is analogous to the one above.

The (blue) line made of circles represents the norm of the “exact error”, e(t) =
ŷ(t)− y(t), where ŷ is the solution of (2.4) and y is the solution of (2.1).

Dimension of the POD subspace. Let Λk =
∑n

i=k+1 λi be the sum of the eigen-
values ignored in the construction of the POD reduced model and Λ = Λk/

∑n
i=1 λi

be its relative size compared to the sum of all eigenvalues. The POD subspace dimen-
sion k is selected such that the relative error is very close to one, yet k is sufficiently
small. A relative error near zero means that a high percentage of the energy for the
full model was captured by the reduced order model. The values of Λk and Λ, for the
numerical examples considered in this paper, are presented in Table 6.1.

Table 6.1

The sum of ignored eigenvalues Λk and their relative size Λ

Example 1: Advection diffusion Example 2: Pollution model
Nk Λk Λ Λk Λ
5 1.803561e-01 5.890413e-06 6.341930e-13 2.652438e-12
6 2.831234e-02 9.246781e-07 6.971282e-14 2.915657e-13
7 4.193422e-03 1.369567e-07 1.139176e-15 4.764470e-15
8 5.662276e-04 1.849294e-08 1.175776e-16 4.917547e-16
9 6.944298e-05 2.268001e-09 4.938977e-17 2.065669e-16

10 7.716002e-06 2.520038e-10 9.158667e-18 3.830506e-17

An interesting phenomenon can be observed in some of the numerical experiments.
Some of the estimates computed for a certain number of POD vectors are not as good
as estimates corresponding to a smaller POD subspace dimension. At first glance this
would contradict the theoretical description of the POD method, which implies that
the original model would be better approximated as the POD dimension increases.
In fact there is no contradiction. If one considers the entire time interval, one can
notice that the reduced model captures a larger percentage of the original problem as
we add more POD vectors. But our figures show the behavior of the reduced model
only at the final time, not over the entire time interval.

Number of orthogonal vectors for the SCE estimate. We considered one, two,
and three SCE vectors for our numerical examples. As expected, having just one
SCE vector yielded the worst estimate in most of the cases. Nevertheless, even that
estimate was, in many cases, “close enough” to warrant its inclusion in our results.
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6.1. Linear advection-diffusion model. We consider the 1-D problem

ut = p1uxx + p2ux

with B.C. u(0, t) = u(2, t) = 0

and I.C. u(x, 0) = u0(x) = x(2− x)e2x .

The PDE is discretized on a uniform grid of size N+2 with central differencing. With
yi(t) = u(xi, t) and eliminating boundary values, we obtain a size N ODE system

dyi
dt

= p1

yi+1 − 2yi + yi−1

∆x2
+ p2

yi+1 − yi−1

2∆x
, yi(0) = u0(xi) .

The problem parameters were p1 = 0.5, p2 = 1.0 and N = 100. The solution behavior
and numerical results are shown in Fig. 6.1, respectively in Figs. 6.2 and 6.3. The POD
projection matrices were based on m = 100 data points equally spaced in the interval
[t0, tf ] = [0.0, 0.3]. The estimate of the total error is consistently “close” to the exact
value, with the estimates corresponding to Nz = 2, 3 almost identical to the subspace
integration error. The bounds are within an order of magnitude for both IC and RHS
perturbations. The RHS perturbation increases the distance between the bounds
and the forward error. That was expected, since the RHS perturbation changes the
advection coefficient p2, which is dominant for the time window considered.

Fig. 6.1. 1D advection-diffusion example. Behavior of the solution over the integration interval.
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Fig. 6.2. 1D advection-diffusion example. Approximation error.
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(a) Approximation error E1 as function
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Fig. 6.3. 1D advection-diffusion example. Regions of validity.



18 C. HOMESCU, L.R. PETZOLD AND R. SERBAN

6.2. Pollution model. Next we consider the chemical reactions from an air
pollution model described in [26]. It is a highly stiff ODE system consisting of 25
reactions and 20 species. The problem is of the form

dy

dt
= f(y) , y(0) = y0, y ∈ R20 ,

where the function f(y) is defined by
f1 = −∑j∈{1,10,14,23,24} rj +

∑

j∈{2,3,9,11,12,22,25} rj f12 = r9
f2 = −r2 − r3 − r9 − r12 + r1 + r21 f14 = −r13 + r12
f3 = −r15 + r1 + r17 + r19 + r22 f18 = r20
f4 = −r2 − r16 − r17 − r23 + r15 f13 = −r11 + r10
f5 = −r3 + r4 + r4 + r6 + r7 + r13 + r20 f17 = −r20
f6 = −r6 − r8 − r14 − r20 + r3 + 2r18 f15 = r14
f7 = −r4 − r5 − r6 + r13 f16 = −r18 − r19 + r16
f8 = r4 + r5 + r6 + r7 f10 = −r12 + r7 + r9
f11 = −r9 − r10 + r8 + r11 f9 = −r7 − r8
f19 = −r21 − r22 + r22 − r24 + r25 f20 = −r25 + r24

and y0 = [0, 0.2, 0, 0.04, 0, 0, 0.1, 0.3, 0.01, 0.0, 0, 0, 0, 0, 0, 0.007, 0, 0, 0]T . The auxiliary
variables rj and the model parameters kj are given in Table 6.2. Figure 6.4 presents
the solution behavior over the integration domain. Numerical results depicting the

Table 6.2

Auxiliary variables (rj) and model parameters (kj) for the pollution model

r1 = k1y1 r7 = k7y9 r13 = k13y14 r19 = k19y16
r2 = k2y2y4 r8 = k8y9y6 r14 = k14y1y6 r20 = k20y17y6
r3 = k3y5y2 r9 = k9y11y2 r15 = k15y3 r21 = k21y19
r4 = k4y7 r10 = k10y11y1 r16 = k16y4 r22 = k22y19
r5 = k5y7 r11 = k11y13 r17 = k17y4 r23 = k23y1y4
r6 = k6y7y6 r12 = k12y10y2 r18 = k18y16 r24 = k24y19y1

r25 = k25y20
k1 = 0.350 · 100 k7 = .130 · 10−3 k13 = .188 · 101 k19 = .444 · 1012

k2 = 0.266 · 102 k8 = .240 · 105 k14 = .163 · 105 k20 = .124 · 104

k3 = .123 · 105 k9 = .165 · 105 k15 = .480 · 107 k21 = .210 · 101

k4 = .860 · 10−3 k10 = .900 · 104 k16 = .350 · 10−3 k22 = .578 · 101

k5 = .820 · 10−3 k11 = .220 · 10−1 k17 = .175 · 10−1 k23 = .474 · 10−1

k6 = .150 · 105 k12 = .120 · 105 k18 = .100 · 109 k24 = .178 · 104

k25 = .312 · 101

approximation errors and the regions of validity at tf = 1.0 are presented in Figs. 6.5
and 6.6, respectively. The POD projection matrix was based on m = 1000 data points
equally spaced in the interval [t0, tf ] = [0.0, 1.0]. For Nk = 5, 6, 7 the total error and
the subspace integration error are very well approximated by estimates corresponding
to Nz = 2 or 3. For Nk = 8, 9, 10 the estimates are not as good, although they remain
within an order of magnitude. We believe that this behavior is related to the fact that
the POD error (either absolute or relative) is very small. We note that the problem
was solved using tolerances of rtol = 10−4 and atol = 10−7. Thus one can expect a
less uniform behavior if the results are in the neighborhood of 10−7.

Finally, we note that, due to the fact that the problem parameters kj have orders
of magnitude ranging from 10−3 to 1012, we have limited the RHS perturbation only
to perturbations in k4, k5, and k7.
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Fig. 6.4. Pollution example. Behavior of the solution over the integration interval.
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Fig. 6.5. Pollution example. Approximation error.
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Fig. 6.6. Pollution example. Regions of validity.
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7. Conclusions and Future Work. We have presented effective methods for
estimating approximation errors due to the use of POD-based reduced order models
and for evaluating regions of validity of such reduced models. The bounds defining
these regions of validity are a-priori, in the sense that they do not rely on the solution
of the perturbed system. The proposed approach, based on SCE norm estimates
combined with the adjoint method, allows the definition and construction of so-called
“error condition numbers” which can be used to assess the size of errors induced by
perturbations (in initial conditions or in the model itself) without having to solve the
perturbed system. The effectiveness of the proposed methods was demonstrated on
several test problems.

In future work, we plan to investigate the applicability of this technique to the
estimation of errors from other types of reduced order models.
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